skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abbott, Nicholas L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 28, 2026
  2. We elucidate a previously unknown synthesis pathway that leads to polymeric nanospheres, orientation-controlled microgels, or microspheroids via single-step polymerization of divinylbenzene (DVB) using initiated chemical vapor deposition (iCVD) in liquid crystals (LC). iCVD supplies vapor-phase reactants continuously, avoiding the critical limitation of reactant-induced disruption of LC structure that has plagued past LC-templated polymerization processes. LC is leveraged as a real-time display of the polymerization conditions and particle emergence, captured using an in situ long–focal range microscope. Detailed image analysis unravels key LC-guided mechanisms during polymerization. pDVB forms nanospheres due to poor solubilization by nematic LC. The nanospheres partition to the LC-solid interface and further assemble into microgel clusters whose orientation is guided by the LC molecular alignment. On further polymerization, microgel clusters transition to microspheroids that resemble liquid drops. We identify key energetic factors that guide trajectories along the synthesis pathway, providing the fundamental basis of a framework for engineering particle synthesis with shape control. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  3. Abstract A key challenge underlying the design of miniature machines is encoding materials with time‐ and space‐specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale‐dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials. 
    more » « less
  4. We measure and model monolayers of concentrated diffusing colloidal probes interacting with polymerized liquid crystal (PLC) planar surfaces. At topological defects in local nematic director profiles at PLC surfaces, we observe time-averaged two-dimensional particle density profiles of diffusing colloidal probes that closely correlate with spatial variations in PLC optical properties. An inverse Monte Carlo analysis of particle concentration profiles yields two-dimensional PLC interfacial energy landscapes on the kT -scale, which is the inherent scale of many interfacial phenomena ( e.g. , self-assembly, adsorption, diffusion). Energy landscapes are modelled as the superposition of macromolecular repulsion and van der Waals attraction based on an anisotropic dielectric function obtained from the liquid crystal birefringence. Modelled van der Waals landscapes capture most net energy landscape variations and correlate well with experimental PLC director profiles around defects. Some energy landscape variations near PLC defects indicate either additional local repulsive interactions or possibly the need for more rigorous van der Waals models with complete spectral data. These findings demonstrate direct, sensitive measurements of kT -scale van der Waals energy landscapes at PLC interfacial defects and suggest the ability to design interfacial anisotropic materials and van der Waals energy landscapes for colloidal assembly. 
    more » « less